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Abstract 
 

The notion of T-metric spaces is presented in this 

article.Two maps on entire T-metric spaces have 

fixed point theorems that I have presented. By 

using the same approach to a common fixed point 

theorem, I have shown that two unovalent 

mappings in T-metric spaces may be derived. 
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Introduction 
 

An essential fixed point theorem is the theory of 

Banach constriction. The scope of this theorem is 

rather broad.  

There are a lot of writers that have looked at fixed 

point issues for contractive mappings in metric spaces 

with partial order (see [2]-[4]). 

We define S-metric spaces and describe some of their 

characteristics in this article. You may find several 

publications that employ implicit relations on S-metric 

spaces, for example, [5]–[9].  

 

For two mappings in full T metric spaces, I shall 

demonstrate fixed point theorems. For the monovalent 

situation, I also provide an illustration.  

First, we will look at the literature and find precise 

definitions.  

Definition 1.1. 

Let X be a nonempty set. A function F : X^3 → [0,∞) is said to be an F-metric on X, if for each x,y,z,t ∈ 

X, 

M1. T(x,y,z) ≥ 0, 

M2. T(x,y,z) = 0 if and only if x = y = z, M3. 

T(x,y,z) ≤ T(x,x,t) +T(y,y,t) +T(z,z,t). 

The pair (X,T) is called an T-metric space. [6] 

Definition 1.2. 

Let (X,T) be an S-metric space. For r > 0 and x ∈ X we define the open ball BS(x,r) and closed ball 

BS[x,r] with center x and radius r as follows, respectively: 

The pair (X,T) is called an T-metric space. [6] 

Definition 1.2. 

Let (X,T) be an S-metric space. For r > 0 and x ∈ X we define the open ball BS(x,r) and closed ball 

BS[x,r] with center x and radius r as follows, respectively: 
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BS[x,r] = {y ∈ X : T(y,y,x) ≤ r}. [3] 

Definition 1.3. 

Let (X,T) and (X ‘,T ‘) be two T-metric spaces. A function f : (X,T) → (X ‘,T ‘) is said to be 

continuous at a point a ∈ X if for every sequence {xn} in X with T(xn,xn,a) → 0, T ‘(f(xn),f(xn),f(a)) 

→ 0. I say that f is continuous on X if f is continuous at every point a ∈ X. 

Definition 1.4. 

Let (X,T) be an F-metric space and A ⊂ X. [11] 

1. The set A is said to be an open subset of X, if for every x ∈ A there exists r > 0 such that 

BS(x,r) ⊂ A. 

2. The set A is said to be T-bounded if there exists r > 0 such that T(x,x,y) < r for all x,y ∈ 

A. 

3. A sequence {xn} in X converges to x if T(xn,xn,x) → 0 as n → ∞, that is for every ε > 0 

there exists 

n0 ∈ N such that for n ≥ n0, T(xn,xn,x) < ε. In this case, we denote by  lim 𝑥𝑛 → x  and we say 
𝑛→∞ 

that x is the limit of {xn} ⊂X. 

4. A sequence {xn} in X is said to be Cauchy sequence if for each ε > 0 , there exists n0 ∈ N 

such that 

T(xn,xn,xm) < ε for  each n,m ≥ n0. 

5. The T-metric space (X,T) is said to be complete if every Cauchy sequence is convergent. 

Let r be the set of all A ⊂ X with x ∈ A and there exists r > 0 such that BS(x,r) ⊂ A. Then r is a 

topology on X [8] 

Lemma 1.1. 

Let (X,T) be an T- Metric Space and suppose that {xn} and {yn} are T-convergent to x,y, 

respectively. Then I have 

lim sup 𝑇( 𝑥𝑛 , 𝑧 , 𝑦𝑛) ≤ 𝑇( 𝑧, 𝑧 , 𝑥) + 𝑇( 𝑥, 𝑥 , 𝑦) 
𝑛→∞ 

lim sup 𝑇( 𝑥𝑛 , 𝑧 , 𝑦𝑛) ≤ 𝑇( 𝑧, 𝑧 , 𝑥) 
𝑛→∞ 

In particular, if y = x, t hen I have . 

Proof : Let . lim 𝑦𝑛 → y 𝑎𝑛𝑑 lim 𝑥𝑛 → x 
𝑛→∞ 𝑛→∞ 

 
Then for each δ > 0 there exist  𝑛1,𝑛2 ∈ N such that for all  n ≥ 𝑛1 

 

𝑇( 𝑥𝑛 , 𝑥𝑛 , 𝑥) < 𝛿⁄2 
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and for all n ≥ 𝑛2  

. 𝑇( 𝑦𝑛, 𝑦𝑛, 𝑦) < 𝛿⁄4 

 
If set n0 = max{𝑛1,𝑛2 }, then for every n ≥ n0 by condition of T-metric, I have 

 

T( xn , z , yn) ≤ T( xn , xn , x) + T( z, z , x) + T( yn, yn, x) 

 
≤  T( x, x , y) + T( xn , xn , x) + T( z, z , x) + 2 T( yn, yn, y) 

 
In the above inequality, I get the first desired result for the upper limit n → ∞.. The second 

conclusion seems clear. 

 

Theorem 1.1 Let (X,T) be an T-metric space. Then the convergent sequence {xn} in X is 

Cauchy 

Theorem 1.2 Let (T,X) be anT -metric space. Then, I have x,y ∈ T and  T(x,x,y) = T(y,y,x) 

2. Main Results 

 

Theorem 2.1. Let (X,T) be a complete T-metric space and F,G : X → X be mappings satisfying 

the following conditions: 

1. F(X)⊆ G(X) and either F(X) or G(X) is a closed subset of X, 

2. The pair (F,G) is weakly compatible, 

3. T(Fx, Fy, Fz) ≤ ψ (max{T(Gx, Gy, Gz), a1T(Gz, Fx, Fz), a2T(Gz,Fy,Fz)}) for all x,y,z ∈ 

X and 0 < a1,a2 < 1, where  ψ ∈ Φ. 

 

Then the maps F and G have a unique common fixed point. If G is continuous at the fixed 

point p, then F is also continuous at p. 

Note: Φ is reflec the class of all functions ψ : R+ → R+ such that ψ is nondecreasing, continuous 
∞ 
𝑛=1 𝜓𝑛(𝑡) < ∞  for all t > 0. It is clear that ψn(t) → 0 as n → ∞ for  all t > 0 and 

hence, 

I have ψ (t) < t  for all  t > 0. 

 

Proof :  Let  x0 ∈ X. Define the sequence yn = Fxn = Gxn+1, n = 0,1,2,··· and let 

Ln+1 = T(yn,yn,yn+1). 

Then we have L 

 

Ln+1 = T(𝑦𝑛−1, 𝑦𝑛−1, 𝑦𝑛) 

 = T(Axn,Axn,Axn+1) 

and ∑ 
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𝑖=𝑛 

𝑖=𝑛 

𝑖=1 

 

 

≤ ψ (max{T(Gxn, Gxn, Gxn+1), a1T(Bxn+1, Axn, Axn+1), a2T(Gxn+1, Fxn, Fxn+1)}) 

≤ ψ (max{𝐿𝑛, a1𝐿𝑛+1 , a2 𝐿𝑛+1 }). 

 

There for Ln+1 ≤ ψ (Ln) , n = 1,2,3,···. 

Depending on this I have, 

T(yn, yn, yn+1 ) ≤ ψT(𝑦𝑛−1, 𝑦𝑛−1, 𝑦𝑛) 

 

≤ ψ2T(𝑦𝑛−2, 𝑦𝑛−2, 𝑦𝑛−1) 

 

≤ ⋯ … … … … … … …. 

 
≤………………………… 

 

≤ ψ𝑛T(𝑦0, 𝑦0, 𝑦+1) 

 

Therefore, according to the condition of T- metric (Theorem 2.1.3), for every m > n, 

I have T(yn, yn, ym) ≤ 2 T(𝑦𝑛 , 𝑦𝑛 , 𝑦𝑛+1) + T(,𝑦𝑛+1, 𝑦𝑛+1, 𝑦𝑛+2) 

≤ ∑𝑚−3 2[𝑇(𝑦𝑖, 𝑦𝑖, 𝑦𝑖+1) + 𝑇(𝑦𝑚−2, 𝑦𝑚−2, 𝑦𝑚−3) ] 

 
≤ 2[𝜓𝑛(𝑇(𝑦0, 𝑦0, 𝑦1) + 𝜓𝑛+1 𝑇(𝑦0, 𝑦0, 𝑦1) + ⋯ . . +𝜓𝑚−2𝑇(𝑦0, 𝑦0, 𝑦1)]. 

 

= 2 ∑𝑚−3 𝜓𝑖[𝑇(𝑦0, 𝑦0, 𝑦1)] 

 

Therefore ; ∑∞ 𝜓𝑖(𝑠) < ∞ for all s > 0 , T(yn, yn, ym) → 0 as n → ∞. 

 

So that each  𝛿 > 0 , there is 𝑛0 ∈ 𝑁 such that for each  m,n ≥ 𝑛0 and T(yn, yn, ym) < 𝛿 . 

 

This means that {yn} is a Cauchy sequence in X. Since X is complete, there exists q ∈ X such 

that 

lim 𝑦𝑛 = q and q = lim 𝑦𝑛= lim 𝐹(𝑥𝑛) = lim 𝐺(𝑥𝑛+1) 
𝑛→∞ 𝑛→∞ 𝑛→∞ 𝑛→∞ 
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Let G(X) be a closed subset of X. Then there exists z ∈ X such that G(z) = q. I prove that F(z) = 

q. 

Since, 

T(Fz, Fz , Fxn) ≤ψ [max{𝑇(𝐺𝑧 , 𝐺𝑧, 𝐺𝑥𝑛), a1𝑇(𝐺𝑥𝑛, 𝐹𝑧, 𝐹𝑥𝑛), a2𝑇(𝐺𝑥𝑛, 𝐹𝑧, 𝐹𝑥𝑛)}] 

= ψ [max{𝑇(𝑞 , 𝑞, 𝑦𝑛−1), a1𝑇(𝑦𝑛−1, 𝐹𝑧, 𝑦𝑛 ), a2𝑇(𝑦𝑛−1, 𝐹𝑧, 𝑦𝑛)}] 

Setting the limit as n → ∞ in the above inequality, I obtain 

 
T(Fz, Fz , p) ≤ ψ [max{0, a1 lim 𝑠𝑢𝑝 𝑇(𝑦𝑛−1, 𝐹𝑧 , 𝑦𝑛), a2 lim 𝑠𝑢𝑝 𝑇(𝑦𝑛−1, 𝐹𝑧, )𝑦𝑛}] 

𝑛→∞ 𝑛→∞ 

 
≤ ψ [max{0, a1𝑇(𝐹𝑧, 𝐹𝑧 , 𝑞 ), a2𝑇(𝐹𝑧, 𝐹𝑧, 𝑞)}] 

 
≤ max { a1,2}𝑇(𝐹𝑧, 𝐹𝑧 , 𝑞 ) 

 
This shows that 1≤ max { a1,2} , it's a contradiction, it's a mistake. 

Therefore, from ψ (t) < t for all t > 0 , I have Fz = Gz = q. 

From the poor compatibility of the couple (F; G), I have F(Gz) = G(Fz) and therefore 

 

Fz = Gz . 

Let's assume that Fz≠ 𝑧 . 

Then 

T(Fq , Fq ,Fxn) ≤ ψ [max{𝑇(𝐺𝑞 , 𝐺𝑞, 𝐺𝑥𝑛), a1𝑇(𝐺𝑥𝑛, 𝐹𝑞, 𝐹𝑥𝑛), a2𝑇(𝐺𝑥𝑛, 𝐹𝑞, 𝐹𝑥𝑛)}] 

 
= ψ [max{𝑇(𝐺𝑞 , 𝐺𝑞, 𝑦𝑛−1), a1𝑇(𝑦𝑛−1, 𝐹𝑞, 𝑦𝑛), a2𝑇(𝑦𝑛−1, 𝐹𝑞, 𝑦𝑛)}] 

 
Taking the upper limit as n → ∞ in the above inequality, I obtain. 

 
T(𝐹𝑞, 𝐹𝑞,q)≤ψ[max{ a1 lim 𝑠𝑢𝑝 𝑇(𝑦𝑛−1, 𝐹𝑞 , 𝑦𝑛 ), a2 lim 𝑠𝑢𝑝 𝑇(𝑦𝑛−1, 𝐹𝑞, 𝑦𝑛), T(𝐹𝑞, 𝐹𝑞 , q)}] 

𝑛→∞ 𝑛→∞ 

 
≤ ψ [max{ a1T(𝐹𝑞, 𝐹𝑞 , q), a2T(𝐹𝑞, 𝐹𝑞 , q), T(𝐹𝑞, 𝐹𝑞 , q)}] 

 
≤ max{ a1, a2} T(𝐹𝑞, 𝐹𝑞 , q) 
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𝑛 𝑛 𝑛→∞ 

𝑛 

Since ψ (t) < t for all t > 0, I have Gp = Fp = p. Thus p is a common fixed point of F and G. 

Suppose 𝑞′ is another common fixed point of F and G. Then, I have 

T(q, q , 𝑞′) = T(𝐹𝑞, 𝐹𝑞 , 𝑞′) 

 
≤ ψ [max{ a1T( 𝑞′, q , 𝑞′), a2T( 𝑞′, q , 𝑞′), T(q, q , 𝑞′)}] 

 
If T(q, q , 𝑞′) ≤ ψ {T(q, q , 𝑞′)} then T(q, q , 𝑞′) ≤ ψ {T(q, q , 𝑞′)} < T(q, q , 𝑞′) 

which one is a contraction.Hence, I have q = 𝑞′. 

If T(q, q , 𝑞′) < 𝑎T( 𝑞′, q , 𝑞′) < 𝑎T( 𝑞′, q , 𝑞′) , 

 

Then 
 

T(q, q , 𝑞′) < 𝑎T( 𝑞′, q , 𝑞′) 

≤ a (T(q, q , 𝑞′) + 2T( 𝑞′, 𝑞′ , 𝑞′)) =a T(q, q , 𝑞′) 

Where a= max{ a1, a2} . This is also a contraction. . Hence, I have q = 𝑞′. Thus, q is the unique 

common fixed point of F and G. 

Later, I will prove the continuity of mapping in T-metric spaces. 

Let {an} be any sequence in X such that {an} is convergent to q. 

 

Then I have 

 

T(𝐹𝑞, 𝐹𝑞 , 𝐹𝑎𝑛 ) ≤ ψ [max{𝑇(𝐺𝑞 , 𝐺𝑞, 𝐹𝑎𝑛), a1𝑇(𝐺𝑎𝑛, 𝐹𝑞, 𝐹𝑎𝑛), a2𝑇(𝐺𝑎𝑛, 𝐹𝑞, 𝐹𝑎𝑛)}] 

 
Taking the upper limit as n → ∞ in the above inequality, from the continuity of G at a point q I 

get 

 
lim 𝑠𝑢𝑝 𝑇(𝑞, 𝑞, 𝐹𝑎𝑛) = lim 𝑠𝑢𝑝 T(𝐹𝑞, 𝐹𝑞 , 𝐹𝑎𝑛 ) 

𝑛→∞ 𝑛→∞ 

 
≤ 

ψ [max ( a1 lim 
𝑛→∞ 

𝑠𝑢𝑝 𝑇(𝐺𝑎 , 𝐹𝑞, 𝐹𝑎 ), a2 lim 
𝑛→∞ 

𝑠𝑢𝑝 𝑇(𝐺𝑎𝑛
, 𝐹𝑞, 𝐹𝑎𝑛

), lim 𝑠𝑢𝑝 T(𝐹𝑞, 𝐹𝑞 , 𝐹𝑎𝑛 
) )] 

≤ ψ [max ( a1 lim 
𝑛→∞ 

𝑠𝑢𝑝 𝑇(𝑞, 𝑞, 𝐹𝑎 ), a2 lim 
𝑛→∞ 

𝑠𝑢𝑝 𝑇(𝑞, 𝑞, 𝐹𝑎𝑛), 0 )] 

≤ max{ a1, a2} 𝑇(𝑞, 𝑞, 𝐹𝑎𝑛) 
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𝑛 𝑛 

𝑛 𝑛 

𝑛 𝑛 

𝑛 𝑛 

𝑛 

after this 

a1 lim 
𝑛→∞ 

𝑠𝑢𝑝 𝑇(𝐺𝑎𝑛
, 𝐹𝑞, 𝐹𝑎𝑛

) 

≤ a1 { lim 
𝑛→∞ 

𝑠𝑢𝑝 𝑇(𝐺𝑎 , 𝐺𝑎 , 𝐺𝑞) + lim 𝑠𝑢𝑝 T(𝐹𝑞, 𝐹𝑞 , 𝐺𝑞 ) 
𝑛→∞ 

 
And 

+ lim 𝑠𝑢𝑝 𝑇(𝐹𝑎 , 𝐹𝑎 , 𝐺𝑞)} 
𝑛→∞ 

 
a2 lim 𝑠𝑢𝑝 𝑇(𝐺𝑎 , 𝐹𝑞, 𝐹𝑎 ) 

𝑛→∞ 

≤ a2 { lim 𝑠𝑢𝑝 𝑇(𝐺𝑎𝑛, 𝐺𝑎𝑛, 𝐺𝑞) + lim 𝑠𝑢𝑝 T(𝐹𝑞, 𝐹𝑞 , 𝐺𝑞 ) 
 

 
I have 

𝑛→∞ 

+ lim 𝑠𝑢𝑝 𝑇(𝐹𝑎 , 𝐹𝑎 , 𝐺𝑞)} 
𝑛→∞ 

𝑛→∞ 

lim 𝑠𝑢𝑝 𝑇(𝑞, 𝑞, 𝐹𝑎𝑛) ≤ max{ a1, a2} lim 𝑠𝑢𝑝 𝑇(𝑞, 𝑞, 𝐹𝑎𝑛) 
𝑛→∞ 𝑛→∞ 

 
This means that 

lim 𝑠𝑢𝑝 𝑇(𝑞, 𝑞, 𝐹𝑎 ) = 0 . 
𝑛→∞ 

 
Then, I deduce that F is continuous at q. 

 

Corollary : Let (X; T) be a complete T-metric space and A : X →X be a mapping satisfying the 

following 

 

inequality. 

 

T(𝐹𝑥1 , 𝐹𝑥2 , 𝐹𝑥3 ) ≤ ψ [max{T(𝐺𝑥1 , 𝐺𝑥2 , 𝐺𝑥3 ), a1𝑇(𝐺𝑥3 , 𝑥3), a2𝑇(𝑥3, 𝐹𝑥2 , 𝐹𝑥3 )}] 

 
for all 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋, where ψ ∈ Φ. Then the mapping F has a unique common fixed point 

q ∈X . 

 

And, the mapping F is continuous at q. 
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